The State of the Art in Tag Ontologies: A Semantic Model for Tagging and Folksonomies

Haklae Kim, Simon Scerri, John G. Breslin, Stefan Decker and Honggee Kim
This Presentation

I. Background

II. Tagging Models and Tag Ontologies

III. Comparison of Existing Tag Ontologies
I. Background
HOW MANY MODERN SOCIAL SITES DO NOT SUPPORT TAGGING?
Easy-to-use

Created by user participation

Collective ‘intelligence’

Emergent semantics
II. Tagging Models and Tag Ontologies
Core Concepts

- **Tag**: a word or phrase that is recognisable by people and computers

- **Resource**: a thing to be tagged, identifiable by a URI or a similar naming service

- **Tagger**: someone/thing doing the tagging, e.g. user of an application
TAGGING

We tag a specific resource with keywords.
Tagging := (user, tag, resource)
Personal tagging (non-social)

Social interaction across different systems?

Folksonomies: collaborative tagging

‘Picture Credit: Maarten Janssen, 2006’
Folksonomy :=
(Tag Set, User Group, Source, \textit{Tagging}, Occurrences)

\textit{Tagging} := (user, tag, resource)
CURRENTLY

User assigns a Tag to a Resource in a specific system.

We don’t know the relationships

No standard to enable reuse among different systems
The structure of Tagging elements (People, Tags, Resources, ...) can be defined in human-readable \textit{AND} machine-processable ways.

\begin{verbatim}
<tag:name> bear </tag:name>
\end{verbatim}
The **MEANING** of Tagging elements (People, Tags, Resources, ...) can also be defined in a machine-processable way.
ONTOLOGIES

Enable:

• *Increased Knowledge Representation Sophistication*

• *Machine Processable Representation*

• *Facilitation of Knowledge Exchange*
TAG ONTOLOGIES: Allow us to represent tagging elements and their relationships at a semantic level.

“A little semantics goes a LONG way”
III. Comparison of Existing Tag Ontologies
Selected Tag Ontologies

<table>
<thead>
<tr>
<th>Ontology</th>
<th>URL</th>
<th>Update</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruber</td>
<td>http://www.holygoat.co.uk/projects/tags/</td>
<td>Nov ’05</td>
<td>http://revyu.com</td>
</tr>
<tr>
<td>Newman</td>
<td>http://code.google.com/p/tagont/</td>
<td>Jan ’07</td>
<td>-</td>
</tr>
<tr>
<td>Knerr</td>
<td>http://eslomas.com/tagontology-1.owl</td>
<td>’07</td>
<td>-</td>
</tr>
</tbody>
</table>
| Echarte | http://scot-project.org | Jun ’08 | http://int.ere.st
| | | | http://relaxseo.com
| | | | http://openlinksw.com
| SCOT | http://moat-project.org | Feb ’08 | http://openlinksw.com
| | | | lord.info
| MOAT | http://www.semanticdesktop.org/ontologies/nao/ | Aug ‘07 | Nepomuk
| NAO | | | |
Ontology Class Comparison (selection)

<table>
<thead>
<tr>
<th>Model</th>
<th>Resource</th>
<th>Tag</th>
<th>Tagging</th>
<th>User</th>
<th>Group</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruber</td>
<td>Object</td>
<td>Tag</td>
<td>Tagging</td>
<td>Tagger</td>
<td></td>
<td>Source</td>
</tr>
<tr>
<td>Newman</td>
<td>rdfs:Resource</td>
<td>:Tag</td>
<td>:Tagging</td>
<td>foaf:Agent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echarte</td>
<td>:Resource</td>
<td>:Tag</td>
<td>:Annotation</td>
<td>:User</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCOT</td>
<td>sioc:Item</td>
<td>:Tag</td>
<td>tags:Tagging</td>
<td>sioc:User</td>
<td>sioc:Usergroup</td>
<td>sioc:Site</td>
</tr>
<tr>
<td>MOAT</td>
<td>rdfs:Resource</td>
<td>tag:Tag</td>
<td>tags:Tagging</td>
<td>foaf:Agent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAO</td>
<td>rdfs:Resource</td>
<td>:Tag</td>
<td></td>
<td></td>
<td>:Party</td>
<td></td>
</tr>
</tbody>
</table>
Ontology Property Comparison (selection)

<table>
<thead>
<tr>
<th>Resource</th>
<th>User</th>
<th>Tag</th>
</tr>
</thead>
</table>
| Resource | | tags:taggedWithTag | scot:hasTag
| | | nao:hasTag | |
| User | | scot:usedBy | tags:equivalentTag
| | | nao:creator | tags:relatedTag
| Tag | tags:isTagOf | scot:aggregatedTag | tags:spellingVariant
| | scot:tagOf | scot:delimited | ec:hasTag
| | nao:isTagFor| tagont:sameTag | |
| | ec:hasRelatedResource | | |

Table 4. Object Type Properties. The table shows relationships between core concepts, interpreted as domain (row) – property – range (column)
Inclinations and Representation Levels of Selected Ontologies
MOAT (Meaning Of A Tag)
SCOT (Social Semantic Cloud of Tags)
Linking among Tag Ontologies
Folksonomies: Linking Tag Clouds
Conclusion

Tagging := (User, Tag, Resource)

Folksonomy :=
(Users, Tags, Source, Tagging*, Occurrences*)

• Existing Tag Ontologies do not represent Collaborative Tagging well enough on their own.

• SCOT + MOAT + additional vocabularies (SIOC, FOAF, DC, etc.) provide sufficient representation for Collaborative Tagging & Folksonomies

• Thus, Tag Ontologies provide the possibility for machine-processable representations that can be shared across social tagging systems.